5 resultados para Proportional Hazards Models

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Literature on investors' holding periods for securities suggests that high transaction costs are associated with longer holding periods. Return volatility, by contrast, is associated with shorter holding periods. In real estate, high transaction costs and illiquidity imply longer holding periods. Research on depreciation and obsolescence suggests that there might be an optimal holding period. Sales rates and holding periods for U.K. institutional real estate are analyzed, using a proportional hazards model, over an 18-year period. The results show longer holding periods than those claimed by investors, with marked differences by type of property and over time. The results shed light on investor behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The literature on investors’ holding periods for equities and bonds suggest that high transaction costs are associated with longer holding periods. Return volatility, by contrast, is associated with short-term trading and hence shorter holding periods. High transaction costs and the perceived illiquidity of the real estate market leads to an expectation of longer holding periods. Further, work on depreciation and obsolescence might suggest that there is an optimal holding period. However, there is little empirical work in the area. In this paper, data from the Investment Property Databank are used to investigate sales rate and holding period for UK institutional real estate between 1981 and 1994. Sales rates are investigated using the Cox proportional hazards framework. The results show longer holding periods than those claimed by investors. There are marked differences by type of property and sales rates vary over time. Contemporaneous returns are positively associated with an increase in the rate of sale. The results shed light on investor behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents practical approaches to the problem of sample size re-estimation in the case of clinical trials with survival data when proportional hazards can be assumed. When data are readily available at the time of the review, on a full range of survival experiences across the recruited patients, it is shown that, as expected, performing a blinded re-estimation procedure is straightforward and can help to maintain the trial's pre-specified error rates. Two alternative methods for dealing with the situation where limited survival experiences are available at the time of the sample size review are then presented and compared. In this instance, extrapolation is required in order to undertake the sample size re-estimation. Worked examples, together with results from a simulation study are described. It is concluded that, as in the standard case, use of either extrapolation approach successfully protects the trial error rates. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The precipitating role of life events in the onset of depression is well-established. The present study sought to examine whether life events hypothesised to be personally salient would be more strongly associated with depression than other life events. In a sample of women making the first transition to parenthood, we hypothesised that negative events related to the partner relationship would be particularly salient and thus more strongly predictive of depression than other events. Methods A community-based sample of 316 first-time mothers stratified by psychosocial risk completed interviews at 32 weeks gestation and 29 weeks postpartum to assess dated occurrence of life events and depression onsets from conception to 29 weeks postpartum. Complete data was available from 273 (86.4%). Cox proportional hazards regression was used to examine risk for onset of depression in the 6 months following a relationship event versus other events, after accounting for past history of depression and other potential confounders. Results 52 women (19.0%) experienced an onset of depression between conception and 6 months postpartum. Both relationship events (Hazard Ratio = 2.1, p = .001) and other life events (Hazard Ratio = 1.3, p = .020) were associated with increased risk for depression onset; however, relationship events showed a significantly greater risk for depression than did other life events (p = .044). Conclusions The results are consistent with the hypothesis that personally salient events are more predictive of depression onset than other events. Further, they indicate the clinical significance of events related to the partner relationship during pregnancy and the postpartum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.